
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4381 333

An Efficient Fuzzy Association Rule Mining

Technique

Gajendra Singh Rajput
1
, Nayna Sharma

2
, Shashank Swami

3

M.Tech scholar, Computer Science & Engineering, VITM, Gwalior

M.Tech scholar, Computer Science & Engineering, VITM, Gwalior

Associate Professor, Computer Science & Engineering, VITM, Gwalior

Abstract-Association rules mining in large databases is a core topic of data mining. Discovering these associations is

beneficial to the correct and appropriate decision made by decision makers. Discovering frequent item sets is the key

process in association rule mining. One of the challenges in developing association rules mining algorithms is the

extremely large number of rules generated which makes the algorithms inefficient and makes it difficult for the end

users to comprehend the generated rules. In this paper we proposed efficient fuzzy association rule mining technique to

find all co-occurrence relationships among data items. The proposed method which allows considerably reduced the

search space with discover the frequent item set and finding fuzzy sets for quantitative attributes in a database and

finally employs techniques for mining of Fuzzy Associate Rules Mining (FARM).

Keywords: Data Mining, Association Rule Mining, FP Mining, FARM.

INTRODUCTION

 Data mining is the key step in the knowledge discovery

process. The main tasks of Data mining are generally

divided in two categories: Predictive and Descriptive. The

objective of the predictive tasks is to predict the value of a

particular attribute based on the values of other attributes,

while for the descriptive ones, is to extract previously

unknown and useful information such as patterns,

associations, changes, anomalies and significant

structures, from large databases. There are several

techniques satisfying these objectives of data mining. The

existing mining algorithms have some problems: the
existing mining algorithms are mostly designed in forms

of several passes so that the whole database needs to be

read from disks several times for each user’s query under

the constraint that the whole database is too large to be

stored in memory. This is very inefficient in considering

the big overhead of reading the large database even though

only partial items are interested

In fact. As a result, they cannot perform efficiently in

terms of responding the user’s query quickly. Secondly, in

many cases, the algorithms generate an extremely large

number of association rules, often in thousands or even

millions. Further, the association rules are sometimes very

large. It is nearly impossible for the end users to

comprehend or validate such large number of complex

association rules, thereby limiting the usefulness of the
data mining results. Thirdly, no guiding information is

provided for users to choose suitable settings for the

constraints such as support and confidence such that an

appropriate number of association rules are discovered.

Consequently, the users have to use a try and -error

approach to get suitable number of rules. It is very time

consuming and inefficient. One of the main challenges in

mining association rules is developing fast and the

efficient algorithms that can handle large volumes of data

set. We proposed in this paper an efficient fuzzy

association rule mining technique to allows considerably

reduced the search space with discover the frequent item

set and finding fuzzy sets for quantitative attributes in a

database and finally employs techniques for mining of

fuzzy Associate Rules Mining (FARM).

BACKGROUND TECHNIQUES

Association Rule

Association rule mining provides a useful mechanism for

discovering correlations among items belonging to

customer transactions in a market basket database. Let D

be the database of transactions and J = {J1, ..., Jn} be the
set of items. A transaction T includes one or more items in

J (i.e., T ⊆ J). An association rule has the form X ⇒ Y ,

where X and Y are non-empty sets of items (i.e. X ⊆ J, Y

⊆ J) such that X ∩ Y = Ø. A set of items is called an

itemset, while X is called the antecedent. The support

sprtD(x) of an item (or itemset) x is the percentage of

transactions from D in which that item or itemset occurs in

the database. In other words, the support sprt () of an

association rule X ⇒Y is the percentage of transactions T

in a database where X ∪ Y ⊆ T. The confidence or

strength c for an association rule X ⇒ Y is the ratio of the

number of transactions that contain X ∪ Y to the number

of transactions that contain X. An itemset X ⊆ J is

frequent if at least a fraction sprt() of the transaction in a

database contains X. Frequent itemsets are important

because they are the building blocks to obtain association

rules with a given confidence and support [1-2].

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4381 334

Fuzzy Logic

Fuzzy logic is a form of many-valued logic which deals

with reasoning that is approximate rather than fixed and

exact. Compared to traditional binary sets (where variables

may take on true or false values), fuzzy logic variables

may have a truth value that ranges in degree between 0

and 1. Fuzzy logic has been extended to handle the

concept of partial truth, where the truth value may range
between completely true and completely

false. Furthermore, when linguistic variables are used,

these degrees may be managed by specific functions. Any

axiomatizable fuzzy theory is recursively enumerable. In

particular, the fuzzy set of logically true formulas is

recursively enumerable in spite of the fact that the crisp set

of valid formulas is not recursively enumerable, in

general. Moreover, any axiomatizable and complete theory

is decidable.

It is an open question to give supports for a Church

thesis for fuzzy mathematics the proposed notion of
recursive enumerability for fuzzy subsets is the adequate

one. To this aim, an extension of the notions of fuzzy

grammar and fuzzy Turing machine should be necessary

(see for example Wiedermann's paper). Another open

question is to start from this notion to find an extension

theorems to fuzzy logic [4-7].

Frequent Pattern growth algorithm

In the first pass, the algorithm counts occurrence of items

(attribute-value pairs) in the dataset, and stores them to

'header table'. In the second pass, it builds the FP-tree

structure by inserting instances. Items in each instance

have to be sorted by descending order of their frequency in
the dataset, so that the tree can be processed quickly. Items

in each instance that do not meet minimum coverage

threshold are discarded. If many instances share most

frequent items, FP-tree provides high compression close to

tree root.

Recursive processing of this compressed version of main

dataset grows large item sets directly, instead of

generating candidate items and testing them against the

entire database. Growth starts from the bottom of the

header table (having longest branches), by finding all

instances matching given condition. New tree is created,
with counts projected from the original tree corresponding

to the set of instances that are conditional on the attribute,

with each node getting sum of its children counts.

Recursive growth ends when no individual items

conditional on the attribute meet minimum support

threshold, and processing continues on the remaining

header items of the original FP-tree. Once the recursive

process has completed, all large item sets with minimum

coverage have been found, and association rule creation

begins [8-10].

Related Works on Frequent Itemset Mining

The approach proposed by Chui et. al computes the
expected support of itemsets by summing all itemset

probabilities in their U-Apriori algorithm. Later, they

additionally proposed a probabilistic filter in order to

prune candidates early.

The UF-growth algorithm is proposed. Like U-Apriori,

UF-growth computes frequent itemsets by means of the
expected support, but it uses the FP-tree approach in order

to avoid expensive candidate generation. In contrast to our

probabilistic approach, itemsets are considered frequent if

the expected support exceeds minSup. The main drawback

of this estimator is that information about the uncertainty

of the expected support is lost; ignore the number of

possible worlds in which an itemset is frequent. Proposes

exact and sampling-based algorithms to find likely

frequent items in streaming probabilistic data. However,

they do not consider itemsets with more than one item.

The current state-of the art (and only) approach for
probabilistic frequent itemset mining (PFIM) in uncertain

databases was proposed. Their approach uses an Apriori-

like algorithm to mine all probabilistic frequent itemsets

and the poisson binomial recurrence to compute the

support probability distribution function (SPDF).

A probabilistic database denotes a database composed of

relations with uncertain tuples, where each tuple is

associated with a probability denoting the likelihood that it

exists in the relation. This model, called “tuple

uncertainty”, adopts the possible worlds semantics. A

probabilistic database represents a set of possible “certain”

database instances (worlds), where a database instance
corresponds to a subset of uncertain tuples. Each instance

(world) is associated with the probability that the world is

“true”. The probabilities reflect the probability distribution

of all possible database instances.The approach proposed

was the first approach able to solve probabilistic queries

efficiently under tuple independency by means of dynamic

programming techniques [1-2] and [4].

PROPOSED FUZZY ASSOCIATION RULE MINING

TECHNIQUES

In this paper we proposed efficient fuzzy association rule

mining technique to find all co-occurrence relationships

among data items. The proposed method which allows

considerably reduced the search space with discover the

frequent item set and finding fuzzy sets for quantitative
attributes in a database and finally employs techniques for

mining of Fuzzy Associate Rules Mining (FARM).

Definitions:

 Support

The rule X ⇒ Y holds with support s if s% of transactions

in D contains X ∪ Y. Rules that have a s greater than a
user-specified support is said to have minimum support.

 Confidence

The rule X ⇒ Y holds with confidence c if c% of the

transactions in D that contain X also contain Y. Rules that

have a c greater than a user-specified confidence is said to

have minimum confidence.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4381 335

 Itemset: An itemset is a set of items. A k-itemset

is an itemset that contains k number of items.

 Frequent itemset: This is an itemset that has

minimum support.

 Candidate set: This is the name given to a set of

itemsets that require testing to see if they fit a certain

requirement [1] and [5].

1. Discovering Frequent Itemsets using Apriori

Algorithm

The proposed of our method is the Apriori algorithm. Our

contributions are in providing novel scalable approaches

for each building block. We start by counting the support

of every item in the dataset and sort them in decreasing

order of their frequencies. Next, we sort each transaction
with respect to the frequency order of their items. We call

this a horizontal sort. We also keep the generated

candidate itemsets in horizontal sort.

Efficiently generating candidates

Let us consider generating candidates of an arbitrarily

chosen size, k + 1. We will assume that the frequent k-

itemsets are sorted both horizontally and down word. The

(k − 1) × (k − 1) technique generates candidate (k+1)

itemsets by taking the union of frequent k-itemsets. If the

first k−1 elements are identical for two distinct frequent k-

itemsets, fi and fj , we call them near-equal and denote
their near-equality by fi = fj . Then, classically, every

frequent itemset fi is compared to every fj and the

candidate fi ∪ fj is generated whenever fi = fj. However,

our method needs only ever compare one frequent itemset,

fi, to the one immediately following it, fi+1.

A crucial observation is that near-equality is transitive

because the equality of individual items is transitive. So, if

fi = fi+1, . . . , fi+m-2 = fi+m-1 then we know that (∀ j, k) < m,

fi+j = fi+k.

Recall also that the frequent k-itemsets are fully sorted

(that is, both horizontally and down word), so all those
that are near-equal appear contiguously. This sorting taken

together with the transitivity of near-equality is what our

method exploits.

In this way, we successfully generate all the candidates

with a single pass over the list of frequent k-itemsets as

opposed to the classical nested-loop approach. Strictly

speaking, it might seem that our processing of
candidates effectively causes extra passes, but it can be

shown using the A Priori Principle that m is typically

much less than the number of frequent itemsets. First, it

remains to be shown that our one pass does not miss any

potential candidates. Consider some candidate c = {ia, . . . ,

ik}. If it is a valid candidate, then by the A Priori Principle,

fi = {i1, . . . , ik-2, ik-1} and fj = {i1, . . . , ik-2, ik} are

frequent. Then, because of the sort order that is required as

a precondition, the only frequent itemsets that would

appear between fi and fj are those that share the same (k −

2)-prefix as they do. The method described above merges
together all pairs of frequent itemsets that appear

contiguously with the same (k − 2)-prefix. Since this

includes both fi and fj , c = fi ∪ fj must have been

discovered.

2. Discovering Fuzzy Sets using Clustering
The traditional way to discover the fuzzy sets needed for a

certain data set is to consult a domain expert who will

define the sets and their membership functions. This

requires access to domain knowledge which can be

difficult or expensive to acquire. In order to make an

automatic discovery of fuzzy sets possible, an approach

has been developed which generates fuzzy sets

automatically by clustering. This method can be used to

divide quantitative attributes into fuzzy sets, which deals

with the problem that it is not always easy do define the

sets a priori.
The proposed method uses a known clustering algorithm

to find the medoids of k clusters. The whole process of

automatically discovering fuzzy sets can be subdivided

into four steps:

1. Transform the database to make clustering

possible (the value of all the attributes has to be positive

integer).

2. Find the k medoids of the transformed database

using a clustering method.

3. For each quantitative attribute, fuzzy sets are

constructed using the medoids.

4. Generate the associated membership functions.
After discovering k medoids, we can compute k fuzzy sets

out of them. We define {m1 ,m2 , ... ,mk } as the k

medoids from a database. The i -th medoid can be defined

as mi={ai1 ,ai2 , ... ,ai n} . If we want to discover the

fuzzy sets for the j -th attribute, ranging from min j to max

j , our mid-points will be {ai1 , ai2 ,... , ai n} . The fuzzy

sets will then show the following ranges: {minj – a2j},

{a1j−a3j}, {a(i-1)j − a(i+1)j}, ... ,{ a(k-1)j −max j } . Finally, the

membership functions for the fuzzy sets have to be

computed.

We can get our membership function looking at the
definition of the sets above. For the fuzzy set with mid-

point akj , the membership function looks as follows: If x≤

a(k-1)j , the membership of x is 0. Also for x≥ a (k-1)j , x=0
because in both cases, the value lies outside the range of

the fuzzy set. If x takes exactly the value of the mid-point

a kj , the membership is 1. For all other cases, we have to

use a formula in order to compute the specific

membership.

Generate membership functions (triangular function):

ortherwise

xaif
a

x

axif
a

x

xaif

axf

jj
k

j
k

j

j

j
k

j

jj
k

j

j
k

jj
k

jij

,0

max,
max

max

min,
min

min

,1

)max,,min:(

)
2

(

)1
2

(

2

2

2

2

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4381 336

A distinction between two types of fuzzy sets has been

introduced. These two types are called equal space fuzzy

sets and equal data points fuzzy sets. Equal space fuzzy

sets are symmetrical and all occupy the same range in the
universal set. In contrary, equal data points fuzzy sets

cover a certain number of instances and thus are not

symmetrical.

3. Algorithm for Fuzzy Association Rule Mining

The algorithm first searches the database and returns the

complete set containing all attributes of the database. In a

second step, a transformed fuzzy database is created from

the original one. The user has to define the sets to which

the items in the original database will be mapped. After

generating the candidate itemsets, the transformed
database is scanned in order to evaluate the support and

after comparing the support to the predefined minimum

support, the items with a too low support are deleted. The

frequent itemsets Fk will be created from the candidate

itemesets Ck. New candidates are being generated from the

old ones in a subsequent step. Ck is generated from Ck-1 as

described for the Apriori algorithm in step 1. The

following pruning step deletes all itemsets of Ck if any of

its subsets does not appear in Ck-1.

Candidate Pruning

The candidate generation so effective is its aggressive
candidate pruning. We believe that this can be omitted

entirely while still producing nearly the same set of

candidates. Stated alternatively, after our particular

method of candidate generation, there is little value in

running a candidate pruning step.

In recent, the probability that a candidate is generated is

shown to be largely dependent on its best testset that is,

the least frequent of its subsets. Classical A Priori has a

very effective candidate generation technique because if

any itemset c \ {ci} for 0 ≤ i ≤ k is infrequent the candidate

c = {c0, . . . , ck} is pruned from the search space. By the A
Priori Principle, the best testset is guaranteed to be

included among these. However, if one routinely picks the

best testset when first generating the candidate, then the

pruning phase is redundant.

In our method, on the other hand, we generate a candidate

from two particular subsets, fk = c \ {ck} and fk-1 = c \ {ck-

1}. If either of these happens to be the best testset, then

there is little added value in a candidate pruning phase that

checks the other k−2 size k subsets of c. Because of our

least-frequent-first sort order, f0 and f1 correspond exactly

to the subsets missing the most frequent items of all those

in c. We observed that usually either f0 or f1 is the best
testset.

We are also not especially concerned about generating a

few extra candidates, because they will be indexed and

compressed and counted simultaneously with others, so if

we do not retain a considerable number of prunable

candidates by not pruning, then we do not do especially

much extra work in counting them, anyway. Finally, the

association rules are generated from the discovered

frequent itemsets.

The Fuzzy mining Associate rules are composed of two

steps:

1. Find all itemsets that have fuzzy support

(FS<X,A>) above the user specified minimum support.

These itemsets are called frequent itemsets.

2. Use the frequent itemsets to generate the desired

rules. Let X and Y be frequent itemsets. We can determine

if the rule X => Y holds by computing the fuzzy
confidence FC<<X,A>,<Y,B>> and this value is larger

than the user specified minimum confidence value.

RESULTS ANALYSIS

An illustrative of the proposed methodology with an

example is given to understand well the concept of the

proposed algorithm and how the process of the generating
fuzzy association rule mining is performed step by step.

The process is started from a given transactional database

as shown :

Step-1:

Suppose that δ arbitrarily equals to 3; that means qualified

transaction is regarded as a transaction with no more than

3 items purchased in the transaction. Result of this step is

a set of qualified transaction as, where M={T1,T2,T3,

T4,T5,T6 ,T7 ,T9}.

A Qualified Data Transaction (M)

Trans_ID List of Items
T1 I1, i2 , i5

T2 I2, i4

T3 I2, i3

T4 I1, i2, i4

T5 I1, i3

T6 I2, i3

T7 I1, i3

T9 I1, i2, i3

Step-2:

The process is started by looking for support of 1-itemsets

for which k is set equal to 1.

Step-3:

Since δ=3, then k ∈ {1,2,3}. It is arbitrarily given β1= β2

=0.5, β3=0.2. That means the system just considers

support of k-itemsets that is greater than 0.5, for k=1,2,

and greater than 0.2, for k=3.

Step-4:

Every k-itemset is represented as a fuzzy set on set of

qualified transactions as given by the following results:

1-itemsets:

{i1}={0.31/T1, 0.31/T4, 0.5/T5, 0.5/T7, 0.31/T9},

{i2}={0.31/T1, 0.5/T2, 0.5/T3, 0.31/T4, 0.5/T6, 0.31/T9},

{i3}={0.5/T3, 0.5/T5, 0.5/T6, 0.5/T7, 0.31/T9},
{i4}={0.5/T2, 0.31/T4},

{i5}={0.31/T1}.

From Step-5 and Step-6, {i5} cannot be considered for

further process because support({i5})< β1.

2-itemsets:

{i1, i2}={0.31/T1, 0.31/T4, 0.31/T9},

{i2, i4}={0.5/T2, 0.31/T4},

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4381 337

{i2, i3}={0.5/T3, 0.5/T6, 0.31/T9},

{i1, i4}={0.31/T4},

{i1, i3}={0.5/T5, 0.5/T7,0.31/T9}.

From Step-5 and Step-6, {i1, i4} cannot be considered for
further process because support({i1, i4})< β2.

3-itemsets:

{ i1,i2,i3}={0.31/T9},

Step-5:

Support of each k-itemset is calculate as given in the

following results:

1-itemsets: 2-itemsets

support({i1}) = 1.99, support({i1, i2})=0.99

support({i2}) = 2.49, support({i2, i4})=0.83

support({i3}) = 2.33, support({i2, i3})=1.33

support({i4}) = 0.83, support({i1, i4})=0.31
support({i5}) = 0.31, support({i1, i3})=1.33

3-itemsets:

support({ i1,i2,i3})=0.31

L1(β1=0.5)

L1

1-itemsets Support

{ i1} 1.99

{ i2} 2.49

{ i3} 2.33

{ i4} 0.83

Table 9. L2 (β2=0.5)

L2

2-itemsets Support

{ i1 ,i2} 0.99

{ i2 ,i4} 0.83

{ i2 ,i3} 1.33

{ i1 ,i3} 1.33

Table 10: L2 (β3=0.2)

L2

2-itemsets Support

{ i1 ,i2,i3} 0.31

Step-6:

From the results as performed by Step-4 and 5, the sets of
frequent 1-itemsets, 2-itemsets and 3-itemsets are given in

Table 8, 9 and 10, respectively.

Step-7:

This step is just for increment the value of k in which if k

> δ, then the process is going to Step-9.

Step-8:

This step is looking for possible/candidate k-itemsets from

Lk-1. If there is no any more candidate k-itemset then go

to Step-9. Otherwise, the process is going to Step-3.

Step-9:

The step is to calculate every confidence of each possible

association rules as follows:

Cf(i1= > i2)= [Support({i1,

i2})]/[Support({i1})]=0.98/1.98=0.49,
Cf(i2= > i4)= [Support({i2,

i4})]/[Support({i2})]=0.84/2.5=0.35

Cf(i1 ˄ i2= i3)= [Support({i1, i2, i3})]/[Support({i1,

i2})]=0.35/0.98=0.35

Cf(i1 ˄ i2= i3)= [Support({i1, i2,

i3})]/[Support({i1})]=035/1.98=0.17

Let a fuzzy association rule represents association between

two fuzzy itemsets, A and B, where A and B are two fuzzy

sets on set of items as given by µA={0.5/i1, 1/i2} and

µB={1/i2, 0.5/i3}, respectively. Confidence of the fuzzy
association rule is calculated by (10) as follows. First,

from A and B, ΦA and ΦB can be determined by ΦA

={i1,i2} and ΦB ={i2,i3}, respectively. Implementation of

the proposed algorithm had been partially experimented by

developing a software where tested transactional database.

Performance Analysis

Quality Measures

This experiment shows how the new FARM approach

gives more interesting rules than the previous one using

ARM algorithm. The figure 1 shows the difference
between the number of large item sets generated from the

previous method and the new FARM approach using

different fuzzy support values. Number of large item sets

increases as the minimum support decreases. The figure

shows the graph against fuzzy support and Frequent item

sets. From the results, it is clear that the approach with

normalization produces less frequent item sets (or even

rules) than the converse. And this is because during the

normalization process, the fuzzy degree of fuzzy sets is

averaged thus making the data more dissimilar

Figure 1: The frequent Item sets comparison

Figure2 shows the execution time of our proposed

algorithm with different number of attributes. The graph is
plotted against Number of Attributes and Execution time

represented in seconds. Execution time increases as the

number of attributes are increased simultaneously. The

FARM algorithms have lesser timings while comparing

with the ARM algorithm execution time, when the number

of attributes is increased then the number of rules also

increases with more attributes but fixed transactions.

Figure 2: Performance Measures: Number of Attributes

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4381 338

CONCLUSION

 This paper introduced an algorithm for generating fuzzy

association rules mining. The algorithm is based on the

concept that the larger number of items purchased in a
transaction means the lower degree of association among

the items in the transaction. Based on the concept, two

new formulas of calculating degree of support and

confidence were proposed utilizing the fuzzy set theory.

The generalized formulas were also proposed in the

relation to the fuzzy association rules. Finally, an

illustrated example was given to clearly demonstrate and

understand steps of the algorithm. The proposed approach

is capable of making web recommendation more

accurately and effectively against the conventional

method. Combining the similarity between rules and
active user and confidence of the weighted rules and the

recommendation engine has selected only the most

relevant pages. Therefore, it increases the efficiency of the

recommendation engine. The simulation results show that

the performance of proposed FARM outperforms the

existing collaborative recommendation algorithm by

means of time consumption, performance and quality.

REFERENCES

[1] Manish Saggar, Ashish Kumar Agarwal and Abhimunya Lad,

“Optimization of Association Rule Mining using Improved Genetic

Algorithms”IEEE 2004.

[2] Anandhavalli M, Suraj Kumar Sudhanshu, Ayush Kumar and Ghose

M.K., “Optimized association rule mining using genetic algorithm”,

Advances in Information Mining, ISSN: 0975–3265, Volume 1, Issue 2,

2009, pp-01-04.

[3] Peter P. Wakabi-Waiswa and Dr. Venansius Baryamureeba,

“Extraction of Interesting Association Rules Using Genetic Algorithms”,

Advances in Systems Modelling and ICT Applications, pp. 101-110.

[4] Farah Hanna AL-Zawaidah, Yosef Hasan Jbara and Marwan AL-

Abed Abu-Zanona, “An Improved Algorithm for Mining Association

Rules in Large Databases”, World of Computer Science and Information

Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 1, No. 7, 2011, pp.

311-316.

 [5] Rupali Haldulakar and Prof. Jitendra Agrawal, “Optimization of

Association Rule Mining through Genetic Algorithm”, International

 Journal on Computer Science and Engineering (IJCSE), Vol. 3 No. 3

Mar 2011, pp. 1252-1259.

[6] M. Ramesh Kumar and Dr. K. Iyakutti, “Genetic algorithms for the

prioritization of Association Rules”, IJCA Special Issue on “Artificial

Intelligence Techniques - Novel Approaches & Practical Applications”

AIT, 2011, pp. 35-38.

[7] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern

mining with uncertain data. In Proc. of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining, 2009.

[8] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T.

Sugihara, and J. Widom. "Trio: A system for data, uncertainty, and

lineage". In Proc. Int. Conf. on Very Large Databases, 2006.

[9] R. Agrawal and R. Srikant. Fast algorithms for mining association

rules. In Proc. ACM SIGMOD Int. Conf. on Management of Data,

Minneapolis, MN, 1994.

[10] 1S. Dehuri,A. K. Jagadev, A. Ghosh and R. Mall, “Multi-objective

Genetic Algorithm for Association Rule Mining Using a Homogeneous

Dedicated Cluster of Workstations”, American Journal of Applied

Sciences 3 (11), 2006, pp. 2086-2095.

BIOGRAPHIES

Gajendra Singh Rajput
1 is the M.Tech

Scholar in Department of Computer Science

& Engineering from Vikrant institute of

Technology & Management, Gwalior.
He has research interest’s area in Data Mining and

Network Security.

Nayna Sharma
2 is the M.Tech Scholar in Department of

Computer Science & Engineering from Vikrant institute of

Technology & Management, Gwalior.

She has research interest’s area in Data Mining and

Network Security.

Shashank Swami
3 is the Associate Professor in

Department of Computer Science & Engineering from

Vikrant institute of Technology & Management, Gwalior.
He has research interest’s area in Data Mining and

Network Security. He is the Guide of M. Tech Scholar.

	Frequent Pattern growth algorithm

